This site uses cookies.
Some of these cookies are essential to the operation of the site,
while others help to improve your experience by providing insights into how the site is being used.
For more information, please see the ProZ.com privacy policy.
Freelance translator and/or interpreter, Verified site user
Data security
This person has a SecurePRO™ card. Because this person is not a ProZ.com Plus subscriber, to view his or her SecurePRO™ card you must be a ProZ.com Business member or Plus subscriber.
Affiliations
This person is not affiliated with any business or Blue Board record at ProZ.com.
Spanish to English: Translation of an exerpt from a scientific journal General field: Tech/Engineering Detailed field: Environment & Ecology
Source text - Spanish Mitigación de la toxicidad anaerobia de lixiviados mediante mezclas con agua residual doméstica
Introducción
En los rellenos sanitarios se generan básicamente dos subproductos, biogás y lixiviados; éstos últimos son generados debido a la percolación de las aguas lluvias a través de los desechos y a las diversas reacciones bioquímicas que pueden ocurrir en el interior del relleno entre el contenido sólido y acuoso y pueden contener altas concentraciones de materia orgánica y otros compuestos que pueden aportar características tóxicas [1] y representar un riesgo potencial para la salud, tanto de los ecosistemas comprometidos con su vertimiento como de las poblaciones humanas [2].
Los sistemas anaerobios están ganando popularidad para el tratamiento tanto de aguas residuales industriales (ARI) como domésticas (ARD), siendo preferidos sobre otros sistemas debido a aspectos como bajos requerimientos de energía, menor producción de lodos y producción de biogás con alto contenido energético [3] y de un efluente con alto contenido de nutrientes, adecuados para el reuso agrícola [4].
En el tratamiento anaerobio, la presencia de com- puestos orgánicos e inorgánicos potencialmente tóxicos es de gran importancia, principalmente la de aquellos que inhiben los microorganismos encargados de la transformación final a metano [5], los cuales pueden estar presentes en el agua residual o ser producidos como metabolitos intermediarios de la degradación incompleta del sustrato [6]. Los inhibidores comunes incluyen compuestos orgánicos, sulfuros, metales pesados, amonio (NH4+) y amoníaco (NH3), siendo este último el principal causante de inhibición en el tratamiento anaerobio de lixiviados puesto que es uno de los potenciales compuestos inhibitorios en mayor concentración y por ser fácilmente permeable a través de la membrana [7].
De los cuatro grupos tróficos presentes en el proceso anaerobio, las bacterias metanogénicas son las menos tolerantes y las que comúnmente cesan su crecimiento debido a la inhibición por NH [8]; cuando la concentración se incrementa en el rango de 4051–5734 mg/L, aunque la población ácidogénica es bastante afectada, la población metanogénica pierde hasta el 56.5% de su actividad [9].
Los métodos para la determinación de la toxicidad se han basado en protocolos desarrollados para la degradación anaerobia y medida de la Actividad Metanogénica Específica - AME y se han centrado básicamente en la sensibilidad de las poblaciones metanogénicas acetoclásticas, ya que es aceptado que al menos el 65% y en algunos casos hasta el 90% del metano producido en procesos anaerobios se debe a la conversión del acetato a metano por parte de éstas [6].
En general, pueden distinguirse tres tipos de toxicidad [10]: Metabólica, que se refiere a una inhibición de un proceso metabólico pero al remover la sustancia tóxica la toxicidad es completamente reversible; en este caso, el tóxico sólo perturba el proceso metabólico sin causar daño a la célula; Fisiológica, que causa daño a componentes subcelulares (membranas o enzimas) pero luego de remover la sustancia tóxica la recuperación es lenta y el reestablecimiento de la actividad es más rápido que el crecimiento de nuevas bacterias. La demora es debida al tiempo requerido por células existentes para reparar el daño de componentes celulares (síntesis de nuevas enzimas) y Bactericida, que ocurre cuando las sustancias tóxicas causan la muerte celular.
La inhibición causada por tóxicos específicos varía ampliamente debido a las diferencias en la composición del sustrato, el inóculo, condiciones ambientales, periodos de aclimatación, métodos y condiciones experimentales. La codigestión con otros desechos, la adaptación de los microorganismos a las sustancias inhibitorias y la incorporación de métodos para remover o mitigar el efecto de los tóxicos antes de la digestión anaerobia, pueden mejorar la eficiencia del tratamiento [7].
El tratamiento biológico de lixiviados combina- dos con ARD constituye una alternativa econó- micamente viable en la cual la degradación de los compuestos orgánicos puede ser favorecida por la dilución y capacidad de adaptación de los microorganismos presentes en el sistema de trata- miento de ARD [11]. Otras ventajas de este méto- do de tratamiento de los lixiviados son un mejor control de las características del afluente al siste- ma de tratamiento, debido a que la variación de la carga contaminante (cantidad y calidad) del lixi- viado en el tiempo es significativamente variable [12].
Para diseñar y operar una planta de tratamiento de aguas residuales – PTAR que trate de manera conjunta ARD con lixiviados, es usual realizar previamente evaluaciones en escala de laboratorio para establecer la relación óptima de ambos residuos, para minimizar efectos inhibitorios y de toxicidad por alguno de los compuestos presentes en el lixiviado [11]. En este estudio se evaluó inicialmente la toxicidad anaerobia de diferentes concentraciones de lixiviados para evaluar el tipo de inhibición que presentan estos desechos y posteriormente se evaluó el efecto de mezclas lixiviado-ARD para intentar mitigar los efectos potencialmente tóxicos del lixiviado sobre la digestión anaerobia.
Translation - English Anaerobic toxicity mitigation of leachates by mixing with domestic wastewater
Introduction
Essentially two subproducts are generated in landfills: biogas and leachate. The latter is produced by the percolation of rainwater through the waste and by the various biochemical reactions that can take place between solids and liquids within a landfill. Leachate can contain high concentrations of organic material and other compounds that contribute to its toxicity [1] and represents a potential health risk to both the ecosystems endangered by its discharge and to human populations [2].
Anaerobic digestion is gaining popularity in the treatment of both industrial and domestic wastewater. It is preferred over other systems due to its low energy requirements, reduction of sludge, production of biogas containing large energy potential [3] and the generation of effluent high in nutrients, which is suitable for agricultural reuse [4].
In anaerobic treatment, the presence of potentially toxic organic and inorganic compounds is of great importance, especially compounds that inhibit the microorganisms responsible for the final process stage of methane gas (CH4) production [5]. Such compounds can be found in wastewater or produced as intermediate metabolites from the incomplete degradation of substrate [6]. Common inhibitors include organic compounds, sulfur, heavy metals, ammonium (NH4+)and ammonia (NH3). Ammonia is the leading cause of inhibition in anaerobic treatment of leachate, given that it appears in large concentration and has an easily permeable membrane [7].
Of the four trophic groups present during the anaerobic process, the methanogens are the least tolerant to toxicity and generally stop growth due to inhibition caused by NH3 [8]. When the concentration of NH3 reaches the range of 4,051-5,734 mg/L, methanogens lose up to 56.5% activity [9], despite the simultaneous decrease in activity of acidogens.
The methods for determining toxicity are based on protocols, which have been developed for anaerobic digestion and are measured by specific methanogenic activity (SMA). They are primarily based on the sensitivity of the autoclastic methanogens, since these methanogens are known to produce at least 65% and in some cases 90% of CH4 from acetate during anaerobic digestion [6].
Generally, there are three types of toxicity [10]: Metabolic, which refers to an inhibition of a metabolic process. Upon removing the toxin, toxicity is completely reversible, as the toxin only disrupts the metabolic process without damaging the cell. Physiologic, which damages subcellular components (membranes or enzymes). After removing the toxin, recuperation is slow due to the time required by the cell to repair the damage done to cellular components (synthesis of new enzymes), causing the reestablishment of activity to be faster than the growth of new bacteria. Finally, there is bactericide, which occurs when toxins induce cellular death.
Inhibition caused by specific toxins varies greatly due to differences in the substrate, inoculate, ambient conditions, acclimation periods, methods and experimental conditions. Codigestion with other wastes, acclimation of the microorganisms to the inhibiting substances and the incorporation of methods to remove or mitigate the effects of the toxins before anaerobic digestion can improve treatment efficiency [7].
The biological treatment of leachate combined with domestic wastewater constitutes an economically viable alternative in which the degradation of organic compounds can be favored because of the dilution and adaptation capacity of the microorganisms present in the wastewater treatment systems [11]. Another advantage of the leachate treatment method is the increased control of the tributary characteristics on the treatment system. This is due to the variation of pollutant load (quantity and quality) of the leachate, which varies significantly over time [12].
In the design and operation of a wastewater treatment plant (WWTP) that treats combined wastewater and leachate, it is common to carry out previously established evaluations at bench scale in order to determine the optimal ratios of the wastes. This acts to minimize inhibiting effects and toxicity of any of the compounds present in the leachate [11]. In this study, the anaerobic toxicity of various concentrations of leachate was initially studied to evaluate the type of inhibition presented by the wastes. Subsequently, the effects of mixtures of leachate and domestic wastewater were evaluated in order to attempt to mitigate the potential toxic effects of the leachate on anaerobic digestion.
German to English: From "Das Parfum: Die Geschichte eines Mörders" by Patrick Süskind General field: Art/Literary Detailed field: Poetry & Literature
Source text - German „So!“, sagte Baldini endlich und trat zur Seite. „Hier ist alles aufgereiht, was du für dein – nennen wir es freundlicherweise – ‚experiment’ benötigst. Zerbrich mir nichts, vertropfe mir nichts! Denn merke: Diese Flüssigkeiten, mit denen du jetzt fünf Minuten lang hantieren darfst, sind von einer Kostbarkeit und Seltenheit, wie du sie nie wieder in deinem Leben in so konzentrierter Form in Händen halten wirst!“
„Wieviel soll ich Ihnen machen, Maître?“ fragte Grenouille.
„Was machen...?“ sagte Baldini, der seine Rede noch nicht beendet hatte.
„Wieviel von dem Parfum?“ schnarrte Grenouille, „wieviel davon wollen Sie haben? Soll ich diese dicke Flasche bis zum Rand vollfüllen?“ Und er deutete auf eine Mischflasche, die gut und gerne drei Liter faßte.
„Nein, das sollst du nicht!“ schrie Baldini entsetzt, und es schrie aus ihm die ebenso tief verwurzelte wie spontane Angst vor der Verschwendung seines Eigentums. Und als geniere er sich über diesen entlarvenden Schrei, brüllte er gleich hinterher: „Und in die Rede fallen sollst du mir auch nicht!“, um dann in ruhigerem, ironisch eingefärbtem Ton fortzufahren: „Wozu brauchen wir drei Liter von einem Parfum, das wir beide nicht schätzen? Im Grunde genügte ein halber Meßbecher voll. Da solche kleine Quantitäten jedoch unpräzis zu mischen sind, will ich dir gestatten, eine Drittelfüllung der Mischflasche anzusetzen.“
„Gut“, sagte Grenouille. „Ich werde diese Flasche zu einem Drittel mit ‚Amor und Psyche’ füllen. Aber, Maître Baldini, ich mache es auf meine Art. Ich weiß nicht, ob das die zünftige Art ist, denn die kenne ich nicht, aber ich mache es auf meine Art.“
„Bitte!“, sagte Baldini, der wußte, daß es bei diesem Geschäft nicht meine oder deine, sondern eben nur eine, eine einzig mögliche und richtige Art gab, die darin bestand, in Kenntnis der Formel und unter entsprechender Umrechnung auf die zu erzielende Endmenge ein aufs exakteste vermessenes Konzentrat aus den verschiedenen Essenzen herzustellen, welches daraufhin mit Alkohol in einem wiederum exakten Verhältnis, das meistens zwischen eins zu zehn und eins zu zwanzig schwankte, zum endgültigen Parfum vergeistigt werden mußte. Eine andre Art, das wußte er, gab es nicht. Und deshalb mußte ihm das, was er nun zu sehen bekam und was er zunächst mit spöttischer Distanz, dann mit Verwirrung und schließlich nur noch mit hilflosem Erstaunen beobachtete, als schieres Wunder erscheinen. Und die Szene ätzte sich so in sein Gedächtnis ein, daß er sie bis ans Ende seiner Tage nicht mehr vergaß.
Translation - English "Alright", said Baldini at last, stepping aside. "I've lined up everything you'll need for your, shall we call it, 'experiment'. Don't break anything! And don't spill anything, either! And remember: These liquids that I'm allowing you to handle for the next five minutes are so precious and rare that you will never again in your life see them in such concentrated forms!"
"How much should I make for you, Master?" asked Grenouille.
"Make what...?" said Baldini, not yet finished with his speech.
"How much of the perfume?" croaked Grenouille, "how much of it do you want? Shall I fill this big bottle up to the rim?" pointing at a mixing flask that could easily hold three liters.
"No you shall not!" screeched Baldini appalled. Screaming out of both a deep-rooted and spontaneous fear of wasting his property. Feeling embarrassed about this telling outburst, he bellowed right afterwards, "And don't interrupt me!" and then proceeding in a calm ironic voice, "What do we need with three liters of a perfume we'll never use? For all intents and purposes half a beaker should suffice. However, since mixing such small quantities can lead to imprecise measurements, I will allow you to fill a mixing flask one third of the way."
"Good", said Grenouille. "I will fill a third of this bottle with Cupid and Psyche. But, Master Baldini, I will do it my way. I don't know if it's the proper way to do it, since I don't know the proper way, but I'll do it my way."
"Go right ahead!" said Baldini, knowing that in this business there was no 'my way' or 'your way' but just one way, one single possible and true way. This consisted of knowing formulas and using their corresponding calculations to produce exact concentrations of the desired end products from the various essences, which in turn must be arranged in exact ratios with alcohol - usually between one-to-ten and one-to-twenty - to manifest a final perfume. Another way did not exist, this he was certain of. Therefore, what he was about to witness, what he would observe first with mocking indifference, then with bewilderment and finally with helpless astonishment, seemed a sheer miracle. And the scene would be etched so permanently in his memory that he did not forget it up to his last dying days.
More
Less
Translation education
Master's degree - Menéndez Pelayo International University
Experience
Years of experience: 11. Registered at ProZ.com: Oct 2014.
I have experience with remediation, water treatment, and renewable/alternative energy. I have also written, proofread, and studied countless scientific journals and am confident in my ability to provide accurate and precise translations in my areas of expertise.
My experience in professional translation projects has been in the realms of: scientific research (reports, studies, campaigns regarding science/health, etc.), film and cinema, (providing transcription, subtitling, and proofreading services for TV shows, soap operas, and documentaries), and in articles pertaining to energy, oil & gas, and news.
EDUCATION Master's in Translation, Menéndez Pelayo International University, Madrid (Spain)
*Specialization in legal and biomedical texts
B.S. Environmental Engineering, San Diego State University, CA (USA)
*Graduated cum laude
*Projects include:
-->design of a wastewater treatment plant (WWTP) for National City, CA
-->design of downtown street/traffic layout and stormwater drainage system for National City, CA. Design was presented before city counsel and is to be implemented through Kimley-Horn and Associates, Inc.
-->research of the effects of the emerging contaminant silver nanoparticles on components of wastewater treatment in WWTPs for the U.S. Department of Agriculture
*Officer and member of Tau Beta Pi, The Engineering Honor Society
B.A. German Studies & Linguistics, San Diego State University, CA (USA)
*Coursework focused on German > English translation theory and practice