This site uses cookies.
Some of these cookies are essential to the operation of the site,
while others help to improve your experience by providing insights into how the site is being used.
For more information, please see the ProZ.com privacy policy.
This person has a SecurePRO™ card. Because this person is not a ProZ.com Plus subscriber, to view his or her SecurePRO™ card you must be a ProZ.com Business member or Plus subscriber.
Affiliations
This person is not affiliated with any business or Blue Board record at ProZ.com.
Services
Translation, Editing/proofreading
Expertise
Specializes in:
Aerospace / Aviation / Space
Telecom(munications)
Energy / Power Generation
Engineering (general)
Military / Defense
Physics
Automation & Robotics
Science (general)
Metrology
Petroleum Eng/Sci
Also works in:
Engineering: Industrial
Computers (general)
Management
Manufacturing
Computers: Software
Computers: Systems, Networks
Government / Politics
Investment / Securities
Transport / Transportation / Shipping
Electronics / Elect Eng
More
Less
Rates
English to Russian - Rates: 0.06 - 0.12 USD per word / 20 - 50 USD per hour English to Belarusian - Rates: 0.06 - 0.15 USD per word / 20 - 50 USD per hour
English to Russian: станок General field: Tech/Engineering Detailed field: Electronics / Elect Eng
Source text - English Type Tests
All type tests have been performed according to IEC standards. Those type tests reports are available on request. Any type test the client wants to perform will be done at the client’s own expenses.
Inspection in factory
The inspection programme for the proposed apparatus is done according to IEC and ALSTOM standards.
Additional routine tests or changes in procedures would have to be discussed at order stage and may be subject to additional costs and delays.
Translation - Russian Проверки образцов.
Все проверки образцов произведены в соответствии со стандартами IEC ( международной электротехнической комиссии). Отчеты о проверке образцов предоставляются по требованию. Любые проверки образцов, которые заказчик желает произвести, будут выполнены за счет заказчика.
Контроль за качеством на производстве.
План контроля за качеством для предлагаемых приборов выполнен в соответствии со стандартами IEC и ALSTOM. Дополнительные проверки в определенном режиме работы или изменения в методике проведения, которые нужно обсудить в стадии заказа, могут быть причиной увеличения стоимости и задержек в поставке продукции.
Автомат защиты от неисправности (FI):
При заказе необходимо указать устанавливается ли автомат защиты от неисправности индукционного типа ( FI) в силовой цепи электропитания станка. При утвердительном ответе, пожалуйста, укажите величину тока повреждения: 10 мА, 30 мА, 100 мА, или 300 мА.
Оборудование станка:
Везде используются единицы измерений в метрической системе, а оборудование, подобранное VOUMAR, соответствует стандартам EN 60204. По требованию предоставляется список предпочтительного оборудования.
Любые требования изменений, выходящие за рамки стандартного списка оборудования, или применение любых других особенных стандартов, могут повлечь за собой увеличение стоимости и возможное изменение графика поставки станка.
English to Russian: Промышленное предприятие электроника General field: Tech/Engineering
Source text - English Control system connections form the "nerve tract" of an industrial plant. Their smooth operation requires a high degree of plant reliability and availability. The interfaces in automation technology react very sensitively to surge voltages. It is therefore necessary to have surge arresters with combined protective circuits, which can unify the coordination of lightning protection zones as needed. The lightning protection zone concept is thus maintained. The protection module is selected to match the signal level, measuring principle, installation location and the operational electric strength. The grounding concept specified for the application is considered here. This is the only way controllers and measuring sensors can be protected effectively against the hazards of surge voltage coupling along the conductor path or via the ground potential.
Translation - Russian Связи систем управления образуют «нервную систему» производственного предприятия. Для их бесперебойного функционирование требуется высокая степень надежности и готовности к работе предприятия. Интерфейсы в технологиях автоматики очень сильно влияют на скачки напряжения. Именно поэтому необходимы разрядники для защиты от перенапряжений с смешанными цепями защиты, которые могут унифицировать согласование зон молниезащиты так, как это необходимо. Таким образом, вводится понятие зоны молниезащиты. Блок защиты подбирается таким образом, чтобы соответствовали друг другу уровень сигнала, метод измерения, размещение установки и рабочая электрическая прочность диэлектрика. В данной статье, рассматривается понятие заземления, соответствующего техническим условия на применение. Это единственный способ для эффективной защиты контроллеров и измерительных датчиков от рисков скачков напряжения, которые образуют связи по пути тока или через нулевой потенциал.
English to Russian: электонная диагностика свойств металлов General field: Tech/Engineering Detailed field: Electronics / Elect Eng
Source text - English 1 Scope and field of application
1.1 This standard describes the examination of special steels for non-metallic inclusions of sulfidic and oxidic nature. Both macroscopic and microscopic methods are used for this purpose. Microscopic examination can be carried out using a metallurgical microscope and auto¬matic devices. It has not been possible to standardize instrumentation for automatic evaluation of micrographs because development of such instruments is not yet complete. This standard specifies a method to be applied for microscopic examination using a metallurgical microscope and a set of standard diagrams arranged in a systematic sequence, which enables the micrograph to be described on the basis of the type and size of inclusion (length and width or diameter) and the frequency (standard diagram plate 1). An index proportional to the content of inclusions from a specified limit size upwards can be calculated separately for the oxide and sulfide components or as a total value. There is also provision for determining maximum sizes.
Translation - Russian 1 Предмет исследования и область применения
1.1 Данный стандарт описывает анализ высококачественных сталей на наличие неметаллических включений сульфидного или оксидного происхождения. С этой цель применяются как макроскопические, так и микроскопические методы. Микроскопический анализ может выполняться с помощью металлографического микроскопа и автоматических приборов. До настоящего времени не представляется возможным стандартизировать измерительные приборы для автоматической оценки микрографических снимков, так как разработка таких приборов еще не завершена. Данный стандарт оговаривает технические условия для методики, которая должна применяться в микроскопическом анализе с помощью металлографического микроскопа и набора стандартных графиков, расположенных в систематизированных последовательностях, что дает возможность обработать микрографический снимок на основании типа и размеров включений (длина, ширина или диаметр), а также частоты (стандартный плоский график 1). Индекс, пропорциональный содержанию включений, начиная с оговоренных размеров и выше, может быть рассчитан отдельно для оксидных и сульфидных составляющих, или как общая величина. Также обеспечивается определение максимальных размеров включений.
English to Russian: электроника блок дистанционного управления General field: Tech/Engineering Detailed field: Electronics / Elect Eng
Source text - English REMOTE CONTROL:
“HV Rack” power supply units are equipped with remote control capability via a rear-panel, 37-pin, ‘D’ female connector (metal shell connected to the chassis); a remote/local selector switch; and a green, power-on, LED indicator.
The 37-pin connector provides a full set of control functions for each of the HV Rack system’s four channels. The current and voltage monitors
are present at all times.
Enable, voltage programming, and current programming for all channels are accessible when the
remote/local switch is in the “Remote” position. In addition, there is a global disable signal, which will disable all channels at the same time.
For a more complete description of the rear-panel interface, control, and function please see the Diagram C: Rear Panel.
CHASSIS:
The “HV Rack” power supply’s chassis is equipped with PEM nut-mounting patterns on both sides to support standard rack slides.
The “HV Rack” system can also be placed in a
standard rack drawer or used independently on the bench top with the 5 supplied rubber feet.
Note, the unit is designed to be cooled via a combination of convection and forced air;
therefore, it is important not to block the air vents.
The AC input power is universal, and operates on 85 to 250VAC at 47 to 63Hz. The AC input operates through an EMI/RFI-filtered, universal-IEC input socket.
The unit is equipped with one to four 300W AC-to-DC, low-voltage power supplies (LVPS) depending on the model ordered. Each LVPS can power UltraVolt units up to 250 watts of output power.
Translation - Russian ДИСТАНЦИОННОЕ УПРАВЛЕНИЕ:
Источники электропитания типа "HV Rack"( высоковольтная стойка) поставляются с поддержкой режима дистанционного управления через 37-контактный D-образный гнездовой разъем на задней панели ( металлическая оболочка кабеля соединена с шасси); позиционным переключателем управления remote/local (дистанционное/местное); и светодиодом индикации включения питания зеленого цвета.
37-контактный разъем обеспечивает полный набор функций управления для каждого из четырех каналов аппаратуры HV Rack. Индикаторы тока и напряжения доступны непрерывно.
В положении Remote ( Дистанционное ) переключателя remote/local для всех каналов доступно включение, программирование напряжения и тока. Кроме того, имеется общий сигнал выключения, который отключает все каналы одновременно.
Более полное описание интерфейса задней панели, управления и работы см. на чертеже С: Задняя панель.
ШАССИ:
Шасси источника электропитания типа "HV Rack” оснащено с двух сторон PEM профилями закрепленными гайками ,чтобы поддержать стандартные салазки стойки.
Аппаратура "HV Rack” может также устанавливаться в стандартной выдвижной панели стойки, или использоваться автономно в настольном варианте на входящих в комплект четырех резиновых ножках .
Примечание: конструкция источника электропитания предусматривает охлаждение циркуляцией воздуха в сочетании с принудительной вентиляцией,
поэтому важно не закрывать вентиляционные отверстия.
На вход подается универсальное питание напряжением переменного тока в рабочем диапазоне от 85 до 250 В, частотой от 47 до 63 Гц. Питание напряжением переменного тока осуществляется через унифицированную по стандарту IEC ( Международная электротехническая комиссия) входную розетку с фильтрацией от электромагнитных и радио помех.
Источник питания комплектуется низковольтными выпрямителями на 300 Вт(LVPS) в количестве от одного до четырех в зависимости от заказанной модели. Каждый LVPS может подать на блоки UltraVolt до 250 Вт выходной мощности.
English to Russian: инструментальная система посадки General field: Tech/Engineering Detailed field: Electronics / Elect Eng
Source text - English ILS 420
Ed. 01.11 SOAC 6−1
CHAPTER 6
MAINTENANCE, FAULT LOCATION AND REPAIR
6.1 MAINTENANCE
6.1.1 Introduction to Maintenance Activities
Maintenance of a system can be defined as preventive and corrective maintenance (corrective maintenance
may also be defined as ’Repair’ activity in case of a fault). Within this chapter two basic types
of preventive maintenance are described, namely periodic maintenance and normal maintenance.
It is essential to ensure that the radiated signals remain within the fixed tolerances at all times after
the navigation system has been handed over for service to air traffic. With this aim in mind, ICAO (see
document ICAO DOC 8071, Vol. I, chapter 4 for ILS) recommends verifying the most important signal
parameters of the ground station within the framework of periodic maintenance to maintain the operational
integrity and serviceability. In addition, flight testing is required to confirm the correctness of
the setting of essential signal−in−space parameters to determine the operational safety and acceptability
of the ILS installation.
NOTE: Change of parameters is allowed only by maintenance people with specific access level
(i.e. > level 2) to the PC user program (ADRACS or MCS). Changes to the established
monitor alarm limits should only be done during flight check procedure.
In the Navaids ILS 420, all the main parameters are maintained at the preset values throughout the
entire life of the system by means of a digital controlled transmitter, so that drift as a result of ageing
should not normally occur. In addition, the radiated signals are checked by two high−precision microprocessor
controlled monitors. These prevent faulty signals from being emitted by either switching
over to the standby transmitter or shutting down the system completely. Since, moreover, no parts
which are subject to mechanical wear and tear are used, the periodic maintenance intervals can be
made longer than usual and the number of measurements restricted to a minimum. In addition to the
periodic maintenance work, there are a few activities of normal maintenance which should be performed
as and when necessary.
NOTE: The responsible authorities (e.g. ATC/Controls) must be informed before commencing
any maintenance work in accordance with national regulations!
6.1.2 Work on Equipment sensitive to electrostatic Charge
A grounding strip with a large cross−sectional area is connected between the shelter grounding terminal,
the equipment racks and the worktable to act as the system ground and to eliminate electrostatic
charges. It is firmly connected to the table and a grounding bus on the working surface. This
system ground should not be connected to either the mains protective ground conductor or to housings
and grounds of external consumers, i.e. consumers not associated with the worktable, except
at the potential equalization bus for the overall installation. The protective ground wire offered with
mains cable or plug connections is not suitable for potential equalization of equipment on a worktable.
Depending on local circumstances, it can carry quite high RF interference voltages.
Mains−supplied equipment, power supplies and test equipment should be connected via two−wire
cables and two−pin plugs. For measures to be taken with respect to components sensitive to electrostatic
charging (MOS, Low Power Schottky) please refer to the customer service documentation
of the manufacturer. If an employee is required to handle subassemblies for transport purposes, he
should place both hands flat on a grounded surface beforehand (e.g. on the ground bus of the work
table). The module can be picked up by its insulator immediately following this potential equalization.
It is safer to avoid touching the terminals. Only remove short−circuit links where absolutely necessary.
Place printed circuit boards only on tables with a conductive, grounded working surface. Leave
individual subassemblies in the antistatic plastic bags for as long as possible.
LLZ 421
Maintenance Operation and Maintenance
ILS 420
6−2 SOAC Ed. 01.11
6.2 PERIODIC MAINTENANCE
We recommend for a CAT. III installation to perform the maintenance activities listed in the table below
weekly, quarterly, half−yearly or yearly (more details are given in ICAO DOC 8071, Vol. I, 4th Ed.). For
other categories (CAT. II or I) the scope of activities should be defined accordingly. The half−yearly
checks (items 13 to 15) are performed mandatory. Besides the recommended activities, the responsible
authorities may define individual procedures depending on local guide lines and requirements.
The following measuring instruments are recommended for maintenance on site:
− Desktop PC or Laptop with PC User Program (ADRACS or MCS) used for maintenance on site
− ILS test set for field measurement (e.g. PIR)
− Multimeter, frequency counter, frequency generator, spectrum analyzer (e.g. HP8561E, 30 Hz to
6.5 GHz), cables, adapters
− If non maintenance free batteries are used:
Battery maintenance equipment (acidimeter, acid syringe, areometer, thermometer, funnel). Refer
to the instructions of the manufacturer.
Ground test requirements for ILS performance CAT. III:
No. Weekly maintenance (recommended)
1
2
3
4
5
6
Check system status and make a visual inspection of building equipment and antenna (6.2.1).
Check course alignment and course shift monitoring (6.2.2).
Check displacement sensitivity and displacement sensitivity monitoring (6.2.2).
Check reduction of clearance DDM deflection < 150 uA, 2F systems only (6.2.2).
Check reduction in power monitoring (6.2.2).
Check total time to shutdown, if out−of− tolerance radiation (6.2.2.1).
No. Quarterly maintenance, additional to weekly (recommended)
7
8
9
10
11
12
Check Off course clearance (6.2.2).
Check settings of all parameters of both transmitters and monitoring for each parameter (6.2.2).
Check output power and power alarm (6.2.2).
Remote control system (line loss): Check LCD window ’Alerts’ for remote control alert message.
Check battery function by simulating a power failure (6.2.5).
Clean all equipment thoroughly (6.2.7).
No. Half−yearly maintenance, additional to quarterly (mandatory)
13a
13b
14
15
Check shutdown circuits and control logics (6.2.3).
If the interlock function is used: Check of ECU interlock shutdown control (6.2.3.1).
Check MIT function (refer to 6.2.4, or with ECU 120571−0003 only: 6.2.4.1).
Check lead batteries including voltage check (refer to 6.3.2, 6.3.3).
No. Yearly maintenance, additional to half−yearly (recommended)
16
17
18
19
Check synthesizer carrier frequency (6.2.2.2).
Check transmitter signals with respect to further parameters like harmonics or spurious (6.2.2).
Take a complete memory readout of all possible parameters (6.2.6).
Check for damages: RF cable connections, mechanical parts (6.2.1)
Fig. 6−1 Periodic maintenance ground test requirements
6.2.1 Damage Check
The following system parts have to be checked visually for entirety and damage:
− Shelter and equipment, fence around the station
− Antenna installation, Monitor dipole, monitor mast and cable
− Obstruction lights
− Tight fitting of all RF cable connections (internal and external), performed yearly only
− Tight fitting of all mechanical parts (screws and nuts), performed yearly only
LLZ 421
Operation and Maintenance Maintenance
ILS 420
Ed. 01.11 SOAC 6−3
6.2.2 Check of Transmitter Parameters and Monitoring
There are various methods to validate periodically the transmitter and monitor functions depending
on the procedures laid down by the national customer procedures. For example course alignment
may be checked by center line runs with a test vehicle weekly, but in case a farfield monitor is available
and by integrity and stability history, the maintenance intervals may be increased. The check of monitor
parameter alarms is proposed to be done with a change of corresponding transmitter parameter
(power level, DDM, SDM etc). In addition, there are some special checks to be performed which are
described separately. Item 4 is only performed with LLZ systems. The previous check ’Polarization’
is still performed only with the flight check during first alignment. For item 17, it is recommended to
use a spectrum analyzer connected to a 50 dB directional coupler which is inserted in the feeding
cable at the output on top of the cabinet.
NOTE: The procedures to change transmitter parameters and check of monitoring alarms can
be performed locally via a connected Laptop/PC or remotely via the RMMC system.
6.2.2.1 Shut Down Timing Test (STT)
The purpose of the Shutdown Timing Test is to measure the time it takes to accomplish a complete
shutdown when the radiating signal source(s) is (are) invalid. The STT measures the time to complete
shutdown both on dual−equipment (DE) systems and on single equipment (SE) systems. The test
is performed with the PC User Program:
a) Use menu ’Commands’ − ’More commands’ − ’Transmitters’ − ’TX Miscellaneous’. Select ’Initiate
transfer/shutdown test’ to activate the STT. The result is shown in the window MON1(2) ’Transfer
Timing Data’: the item ’Test Procedure Result’ must show ’OK’.
6.2.2.2 Check of Carrier Frequency
Validate set station frequency with a frequency counter or similar. The measurement is performed at
the affected TX in Stdby mode (this RF path includes a 35 dB attenuator):
a) Switch off both TX1 and TX2. Remove RF cable from J25 (Stby CRS CSB) at PIN−Diode Transfer
Switch, rear side of cabinet. Connect Frequency Counter to J25 (stby CSB out).
b) Switch on both TX1 and TX2. Open dialog ’Transmitter1−Waveform Data#1’ and ’Transmitter2−
Waveform Data#1’. Note down value of ’CRS CSB SDM’ of standby transmitter. Set it to 0 %. Validate
indication of station frequency. After measurement, reset ’CRS CSB SDM’ of standby transmitter
to noted value. Change transmitter, repeat step b).
c) Finally switch off both TX and connect as normal again. Switch on both TX.
6.2.3 Performing Check of Shutdown Circuits and Control Logics
Transmitter shutdown occurs with the activation of either the modulation shutdown (Shutdown B,
modulation signal at LGA off), or the synthesizer shutdown (Shutdown A, synthesizer carrier generation
off). To ensure that no latent failure exists in the shutdown paths (LGA or SYN) that would prevent
its capability, it is to verify that a transmitter shutdown occurs solely due to this path. To perform the
test, refer to section 6.2.8. Follow the procedure described in the ECU test data sheet.
6.2.3.1 Check of ECU Interlock Shutdown Control
NOTE: Perform this test only if the ECU Interlock function is really used.
Preparation: The runway to which the station under test belongs, must be the inactive one. The correspondent
station status must be ’OFF’. Verify that the DIP−switch SW4(SW1)/2 at the ECU subassembly
is set to ’open’: Interlock enabled.
Test action Expected result
At the LCP of the station , perform a ’TX on’ command. The transmitter is turned on, but station remains not radiating
because the ECU keeps both shut down paths ’OFF’ (SYN and
MOD shutdown).
Station status changes from ’OFF’ to ’Runway OFF’.
After test has passed, return to normal operation
LLZ 421
Maintenance Operation and Maintenance
ILS 420
6−4 SOAC Ed. 01.11
6.2.4 Performing Check of MIT Function
Test action Expected result
Set monitors to bypass; open dialog ’TX Integrity Test Waveforms’
for the transmitter that is on the aerial. Open dialog ’Integrity Test
Data’ for monitor 1 and monitor 2. Open dialog ’LRCI System
Status’.
Change test signal A DDM from 0.0 % DDM to 0.8 % DDM.
Verify MON1 Test Signal A DDM goes to alarm.
Verify MON2 Test Signal A DDM goes to alarm.
Verify ’MON-1 Integrity Test Res.= failed’.
Verify ’MON-2 Integrity Test Res.= failed’.
Set test signal A DDM to 0.0 % Verify all reading return to normal conditions.
Change signal B RF level from 70 % to 80 %. Verify MON1 Test Signal B RF Level goes to alarm.
Verify MON2 Test Signal B RF Level goes to alarm.
Verify ’MON-1 Integrity Test Res.= failed’.
Verify ’MON-2 Integrity Test Res.= failed’.
Set signal B RF level to 70 %. Verify all reading return to normal condition.
Change test signal A SDM and B SDM to 35 % for LLZ. Verify MON1 Test Signal A SDM and B SDM goes to alarm.
Verify MON2 Test Signal A SDM and B SDM goes to alarm.
Verify ’MON-1 Integrity Test Res.= failed’.
Verify ’MON-2 Integrity Test Res.= failed’.
Change test signal A SDM to the original setting, change test
signal B SDM to the original setting.
Verify all reading return to normal conditions.
End MIT verification test.
NOTE: The test values are referenced to the LG−M MIT alarm limit defaults of the monitor integrity test signals:
LLZ − Mon. Integrity Test Test signal A RF Level SDM DDM Test signal B RF Level SDM DDM Unit
Default value 90 40 0 70 38 1.5 %
Alarm limit defaults Lower/Upper 88/92 39/41 −0.5/0.5 Lower/Upper 68/72 37/39 1.0/2.0 %
6.2.4.1 Performing advanced Check of MIT Function (ECU 120571−0003 only)
With the ECU 120571−0003 an advanced check of the MIT−Function is introduced. This check must
not be performed with the ECU −0001 and −0002. The MIT check in section 6.2.4 can be performed
for both the ECU −0001/−0002 and the ECU −0003.
Test action Expected result
Verify monitor bypass off; key switch is in ’Remote’ or ’Local’ position.
− Open dialog ’TX Integrity Test Waveforms’ for the transmitter that is
on aerial (e.g. TX1), and that is on Standby (e.g. TX2).
− Open dialog ’Integrity Test Data’ for monitor 1 and monitor 2.
− Open dialog ’LRCI System Status’.
Verify all reading in normal conditions.
Change ’Integrity test signal A DDM’ (TX1/ LGA1)
from 0.0 % DDM to 1.5 % DDM.
Verify changeover of TX1 aerial to TX2 standby, now aerial.
Check at ECU front:
LED ’Alarm MON1’ and ’ALARM MON2’ (Standby) lit.
Change ’Integrity test signal B DDM’ (TX2/ LGA2)
from 1.5 % DDM to 0.0 % DDM.
Verify shutdown of also TX2: Both TX off
Check at ECU front:
LED ’Alarm MON1’ and ’ALARM MON2’ (Exec. & Standby) lit.
LED ’Integrity Fail’ lit.
Set changed ’Integrity test signal A DDM’ (TX1) and changed ’Integrity
test signal B DDM’ (TX2) back to the original setting:
0.0% (A) and 1.5% (B).
Verify all reading return to normal conditions.
Perform ’Reset ECU’ to restart the system. Both TX on. Verify all reading return to normal conditions.
Equipment is serviceable. End MIT check.
6.2.5 Check of Battery Function
This check shall ensure that the battery is able to supply the installation in case of a mains interrupt.
To check the battery function perform the following procedure:
a) Both TX are on. Switch off mains supply, e.g. switch off the ACC modules. The equipment should
be supplied by the battery and runs without interruption. The LCD screen should indicate a maintenance
alert with ’AC1 Failure’ and ’AC2 Failure’.
b) After a few minutes (e.g. about 5 min) switch on ACC modules again. The equipment should be
supplied by the mains again and runs without interruption.
LLZ 421
Operation and Maintenance Maintenance
ILS 420
Ed. 01.11 SOAC 6−5
6.2.6 Documentation of System Data
The data recorded during the flight test is the only data which is binding for operation of a navigation
installation. It is advisable to check this data in accordance with the chart for periodic maintenance.
A documentation is performed by the printer of the connected PC or in a file for the transmitter data
and monitor data on the PC (.lda files).
The first data so−obtained of the basic adjustments of the alignment procedure at commissioning
and flight check should be recorded and stored in a reference file or on a floppy disk. One hardcopy
of the data should be completed with date and signature. The same procedure should be followed
when performing further checks, when the data recorded can be compared with the original flight
check data.
6.2.7 Cleaning
CAUTION
Cleaning aids, such as brushes and dusters, must be made of antistatic material. See also
the instructions in Section 6.1.2.
− Shelter
Brushes, dusters and a vacuum cleaner should be used to clean the transmitter rack and the rack
for the battery−charged power supply. The transmitter room should not be cleaned with a broom,
but rather using a vacuum cleaner.
The floor should be washed regularly every 6 months. The detergent should be added in small
quantities only to the water; no aggressive cleaning agents should be used. Floor cleaning agents
should be avoided, since these have the same effect as a dielectric and encourage the build−up
of static charges. If the floor covering is made of a conductive material, then similarly only those
cleaning agents expressly recommended by the manufacturer of the floor covering should be
used.
The air filters of the fans, ventilation openings or air conditioners in the shelter should be checked
from time to time in accordance with the volume of dirt which accumulates at the particular location.
The filters should be replaced by new ones before they become clogged. If no new filters are available,
the dirt may − as an exceptional measure − be banged out of the old filter to permit the filter
to be re−used. Damaged filters on the other hand, should not be re−used. If an air conditioner
should become iced−up, switch it off and let it defrost. Observe the manufacturers maintenance
recommendations. The separate battery compartment should be dusted out once a year. Avoid
transferring dirt from the battery compartment into the transmitter room.
− Transmitter rack
Only two types of alcohol, namely Ethyl alcohol or Glycol,or clean water should be used to remove
layers of dirt on the LCP panel. Cleaning procedure: Moisten a cloth a little with one of the liquids
mentioned above and remove dirt.
Dusting of the subassemblies should only take place in conjunction with removal of a subassembly
when this becomes necessary in any case for some other purpose. Even then, subassemblies
should only be dusted if dust can be detected by means of a visual check. They should always
be dusted using a soft brush, and if possible with the aid of a vacuum cleaner. During such operations
it is essential to observe all precautionary measures described in Section 6.1.2 for voltage−
sensitive semiconductors.
− Antenna
Inspect complete antenna, monitor dipole and the equipment installation for any damage caused
by corrosion, rodents, termites, or others. Air traffic control should be informed before the antenna
will be inspected. Normally the antenna is not radiating while inspection.
LLZ 421
Maintenance Operation and Maintenance
ILS 420
6−6 SOAC Ed. 01.11
TEST DATA SHEET LLZ/GP
Operation and Maintenance Maintenance
ILS 420
Ed. 01.10 SOAC 6−7
6.2.8 Performing Check of Shutdown Paths
NOTE: This procedure will take the station out of service.
The shutdown paths are checked for both Shutdown A path (carrier off) and Shutdown B path (modulation
off) for the TX1 and TX2 each. Use Oscilloscope with probes for signal check at ECU (voltage)
and MODPA TP1 (CSB) and TP2 (SBO). If any test fails the ECU, SYN or LGA card should be replaced
before the system is put back into service. The procedure should be accomplished without removing
the ECU card from the equipment cabinet. The jumper should be repositioned without removing
power from the ECU card. When a jumper is in any of the ’park’ positions, the ECU will not have a
test fault. The park positions are used only to hold jumpers. To perform this check, use proposed form
and maintain it in station records. Fig. 6−2 shows the jumper and testpoints. With ECU board
120571−0003, regard the different jumper label noted. Proceed as follows:
− Set key lock switch at LCP to ’Maintenance’. After the test, set key lock switch to previous position.
− Log on to system in level 4. With transmitters on, verify that there are no alarms, alerts or ECU faults
other than the maintenance switch notice indicated on the LCP screen. If there are, troubleshoot
and correct before continuing.
The form comprises following checks:
− Functional test modulation shutdown path TX1 (Shutdown 1B, Shutdown 1A disabled)
− Functional test modulation shutdown path TX2 (Shutdown 2B, Shutdown 2A disabled)
− Functional test Synthesizer carrier shutdown path TX1 (Shutdown 1A, Shutdown 1B disabled)
− Functional test Synthesizer carrier shutdown path TX2 (Shutdown 2A, Shutdown 2B disabled)
− Functional test of Control Logic 1 and 2 and 3rd Shutdown Path (incl. clock detector)
Up to 8 jumpers should be available to perform the test settings.
set
open
3 2 1 3 2 1
65597 / 120571
S/N
/1
/1
/1
/1
/1
/1
J4
J5
J6
J7
J8
J9
J10
J11
On
EXEC
Field
STBY
Bypass
Alarm Mon1
Alarm Mon2
On
Alarm Mon1
Alarm Mon2
Bypass
Alarm Mon1
Alarm Mon2
Bypass
Equipment 1
3 RD Off
Integrity Fail
Switch Fail
Executive
gn
ye
rd
rd
gn
ye
rd
rd
ye
rd
rd
gn
rd
rd
rd
Board Reset /3
/5
/7
/9
/3
/5
/7
/9
/3
/5
/7
/9
/3
/5
/7
/9
PARK position
Do not use a metallic aid to set or remove
the jumper on J8 to J11 to avoid
a short circuit at any board next ECU.
CAUTION
MODPA front
Oscilloscope
Shutdown B
Modul./LGA1
Shutdown A
Carrier/SYN1
Shutdown B
Modul./LGA2
Shutdown A
Carrier/SYN2
Verification of CSB/SBO off at MODPA
ECU front
SYN front
VCO’s off (LED)
jumper J9 to 11
behind LED
/2
/2
/2
/2
/4
/6
/8
/10
/4
/6
/8
/10
/4
/6
/8
/10
/4
/6
/8
/10
Testpoints for
voltage measurement: >4 V
J7
TP1 (CSB)
TP2 (SBO)
LLZ: GP:
TP1 (CSB)
TP2 (SBO)
−0001/0002
NOTE:
Jumper label ECU 120571
0001/0002 0003
J9 = J1
J8 = J3
J11 = J4
J10 = J5
Fig. 6−2 ECU, location of J8,J10, J9,J11 and testpoints; MODPA location of testpoints TP1,TP2
LLZ/GP
Maintenance Operation and Maintenance
TEST DATA SHEET ILS 420
6−8 SOAC Ed. 01.10
TEST DATA SHEET LLZ/GP
Operation and Maintenance Maintenance
ILS 420
Ed. 01.10 SOAC 6−9
Test Data Sheet: Shutdown Path testing (with ECU −0001/−0002)
Test Item Jumper set Purpose Action Expected Result Passed Failed
Prerequisite:
Equipment in ’Normal’ condition,
both TX on, TX1 main
ECU
−0001/−0002
On LCP: Switch
key lock switch to
’MAINTENANCE’.
− ’Monitor Bypass’ set
− Status ’Alarm’
(defeats the 20 s min. off time control)
TX1 J8:1−2, 9−10 Park position
Modulation shutdown path
(LGA1)
* GP active only
J8: 3−4
J8: 5−6
forces Syn 1
carrier gener.
remain enabled:
Shutdown 1A
path will fail
Set ’TX1 off’.
check TP1, TP2
at MODPA1
2F equipment:
check TP1, TP2
also at MODPA2
− Shutdown 1B should act
− ECU shows ’Switch Fail’
− Alert warning ’ECU fault’
− SYN1: LED ’VCO off’ off
− CSB, SBO not present
(CRS)
− CSB, SBO not present
(CLR); GP: CLR, CSB2*
TX2 J10:1−2,9−10 Park position
Modulation shutdown path
(LGA2)
* GP active only
J10: 3−4
J10: 5−6
forces Syn 2
carrier gener.
remain enabled:
Shutdown 2A
path will fail
Set ’TX2off’.
check TP1, TP2
at MODPA1
2F equipment:
check TP1, TP2
also at MODPA2
− Shutdown 2B should act
− ECU shows ’Switch Fail’
− Alert warning ’ECU fault’
− SYN2: LED ’VCO off’ off
− CSB, SBO not present
(CRS)
− CSB, SBO not present
(CLR); GP: CLR, CSB2*
ECU J8,J10 Set to park posit.
Set TX1 on and "TX2 on"
TX1 is main
Reset ECU . Clears the ECU fault:
− ’Switch fail’ is off
− ECU Fault maint. warning
is removed (time < 30 s).
TX1 J9:1−2,9−10 Park position
Syn. carrier shutdown path
(SYN1)
* GP active only
J9: 3−4
J9: 5−6
forces modulation
gener.
path (LGA1)
remain enabled:
Shutdown 1B
path will fail
Set ’TX1 off’.
check TP1, TP2
at MODPA1
2F equipment:
check TP1, TP2
also at MODPA2
− Shutdown 1A should act
− ECU shows ’Switch Fail’
− Alert warning ’ECU fault’
− SYN1: LED ’VCO off’ on
− CSB, SBO not present
(CRS)
− CSB, SBO not present
(CLR); GP: CLR, CSB2*
TX2 J11:1−2,9−10 Park position
Syn. carrier shutdown path
(SYN2)
* GP active only
J11: 3−4
J11: 5−6
forces modulation
gener.
path (LGA2)
remain enabled:
Shutdown 2B
path will fail
Set ’TX2 off’.
check TP1, TP2
at MODPA1
2F equipment:
check TP1, TP2
also at MODPA2
− Shutdown 2A should act
− ECU shows ’Switch Fail’
− Alert warning ’ECU fault’
− SYN2: LED ’VCO off’ on
− CSB, SBO not present
(CRS)
− CSB, SBO not present
(CLR); GP: CLR, CSB2*
ECU J9,J11 Set to park posit.
Set TX1 on and "TX2 on"
TX1 is main.
Reset ECU . Clears the ECU fault:
− ’Switch fail’ is off
− ECU Fault maint. warning
is removed (time < 30 s).
Set equipment to ’Normal’
condition, both TX ON.
Set key switch to
required mode.
Status ’Normal’, equipment is
in service again
Date: Sign:
LLZ/GP
Maintenance Operation and Maintenance
TEST DATA SHEET ILS 420
6−10 SOAC 01.10
Test Data Sheet ECU: Control Logic 1 and 2, 3rd Shutdown Logic (with ECU −0001/−0002)
Test Item Jumper set Purpose Action Expected Result Passed Failed
Prerequisite:
Equipment in ’Normal’ condition,
both TX on, TX1 main
ECU
−0001/−0002
On LCP: Switch
key lock switch to
’LOCAL’.
− ’Monitor Bypass’ not set
− Status ’NORMAL’ **
ECU J8,J9,J10,J11:
1−2, 9−10
Park position ** If ’Maint. Generate LCP Warning’ in
dialogue ’LRCI Station configuration’
is set to ’yes’, the status is ’Warning’.
ECU Control logic 1
TX1
J8: 5−6, 7−8
J9: 5−6, 7−8
Disablecontr.
log. 2 3rd
shutd.logic:
control logic1
remains enabled
Press LGA1 reset
until a station
alarm is induced
Check voltage at
J8/3 & J9/3: >4 V
− station shutdown (si)* or
− change over to TX2 (du)*
− ECU shows ’Switch Fail’
− Both totem poles are off
(1A/1B)
ECU Control logic 1
TX2
J10: 5−6, 7−8
J11: 5−6, 7−8
Disablecontr.
log. 2 3rd
shutd.logic:
control logic1
remains enabled
Press LGA2 reset
until a station
alarm is induced
Check voltage at
J10/3 & J11/3:
>4 V
− station shutdown (dual)
− ECU shows ’Switch Fail’
− Both totem poles are off
(2A/2B)
ECU J8,J9,J10,J11:
1−2, 9−10
Park position − park jumper
− Reset ECU
TX1 and TX2 are on again;
TX1 is main
ECU Control logic 2
TX1
J8: 3−4, 7−8
J9: 3−4, 7−8
Disablecontr.
log. 1 3rd
shutd.logic:
control logic2
remains enabled
Press LGA1 reset
until a station
alarm is induced
Check voltage at
J8/3 & J9/3: >4 V
− station shutdown (si) or
− change over to TX2 (du)
− ECU shows ’Switch Fail’
− Both totem poles are off
(1A/1B)
ECU Control logic 2
TX2
J10: 3−4, 7−8
J11: 3−4, 7−8
Disablecontr.
log. 1 3rd
shutd.logic:
control logic2
remains enabled
Press LGA2 reset
until a station
alarm is induced
Check voltage at
J10/3 & J11/3:
>4 V
− station shutdown (dual)
− ECU shows ’Switch Fail’
− Both totem poles are off
(2A/2B)
ECU J8,J9,J10,J11:
1−2, 9−10
Park position − park jumper
− Reset ECU
TX1 and TX2 are on again;
TX1 is main
ECU 3rd Shutdown logic Disconnect cable
at connector J7
(upper) of SYN1.
Causes an executive alarm
condition.
NOTE: The next step will reboot the LCP. Due to missing communications from the LCP during the reboot time, the executive bypass, although asserted, is disabled for the 3rd
control logic. On the ECU, the flashing LED ’Exec. Bypass’ indicates this state. The 3rd shutdown control integrates the duration of an exec. alarm condition while it is
not bypassed. When this integration reaches 6 s, the control then suppresses the clock to the clock detector which triggers a complete station shutdown.
ECU 3rd Shutdown logic
(incl. Clock Detector)
On LCP, Issue a
’Reboot LCP’
command.
Check voltage at
J8/7, J9/7, J10/7
& J11/7: >4 V
− during LCP reboot, LED
’Exec. Bypass’ goes off
after 10 s, and on again
after 5 s until station
shutdown indicated by
ECU LED ’Exec.On’ and
’Stby On’ off
− ’3rdShutdown Path Off’ lit
− verifies 3rd shutd. logic
as cause of ’off’ condition
Reconnect cable
to J7 of SYN1.
Reset ECU. Clears the ECU.
Set equipment to ’Normal’
condition, both TX ON.
TX1 main.
Set LCP key
switch to
required mode.
Status ’Normal’, equipment is
in service again, no alarms or
alerts indicated.
NOTE: For this test, 8 jumpers are used.
Date: Sign: * (si)= single, (du)= dual
Ed. 01.11
TEST DATA SHEET LLZ/GP
Operation and Maintenance Maintenance
ILS 420
Ed. 01.10 SOAC 6−9a
Test Data Sheet: Shutdown Path testing (with ECU −0003)
Test Item Jumper set Purpose Action Expected Result Passed Failed
Prerequisite:
Equipment in ’Normal’ condition,
both TX on, TX1 main
ECU −0003 On LCP: Switch
key lock switch to
’Maintenance’
− ’Monitor Bypass’ set
− Status ’Alarm’
(defeats the 20 s min. off time control)
TX1 J3: 1−2, 9−10 Park position
Modulation shutdown path
(LGA1)
* GP active only
J3: 3−4
J3: 5−6
forces Syn 1
carrier gener.
remain enabled:
Shutdown 1A
path will fail
Set ’TX1 off’.
check TP1, TP2
at MODPA1
2F equipment:
check TP1, TP2
also at MODPA2
− Shutdown 1B should act
− ECU shows ’Switch Fail’
− Alert warning ’ECU fault’
− SYN1: LED ’VCO off’ off
− CSB, SBO not present
(CRS)
− CSB, SBO not present
(CLR); GP: CLR, CSB2*
TX2 J5: 1−2, 9−10 Park position
Modulation shutdown path
(LGA2)
* GP active only
J5: 3−4
J5: 5−6
forces Syn 2
carrier gener.
remain enabled:
Shutdown 2A
path will fail
Set ’TX2off’.
check TP1, TP2
at MODPA1
2F equipment:
check TP1, TP2
also at MODPA2
− Shutdown 2B should act
− ECU shows ’Switch Fail’
− Alert warning ’ECU fault’
− SYN2: LED ’VCO off’ off
− CSB, SBO not present
(CRS)
− CSB, SBO not present
(CLR); GP: CLR, CSB2*
ECU J3,J5 Set to park posit.
Set TX1 on and "TX2 on"
TX1 is main
Reset ECU . Clears the ECU fault:
− ’Switch fail’ is off
− ECU Fault maint. warning
is removed (time < 30 s).
TX1 J1: 1−2, 9−10 Park position
Syn. carrier shutdown path
(SYN1)
* GP active only
J1: 3−4
J1: 5−6
forces modulation
gener.
path (LGA1)
remain enabled:
Shutdown 1B
path will fail
Set ’TX1 off’.
check TP1, TP2
at MODPA1
2F equipment:
check TP1, TP2
also at MODPA2
− Shutdown 1A should act
− ECU shows ’Switch Fail’
− Alert warning ’ECU fault’
− SYN1: LED ’VCO off’ on
− CSB, SBO not present
(CRS)
− CSB, SBO not present
(CLR); GP: CLR, CSB2*
TX2 J4: 1−2, 9−10 Park position
Syn. carrier shutdown path
(SYN2)
* GP active only
J4: 3−4
J4: 5−6
forces modulation
gener.
path (LGA2)
remain enabled:
Shutdown 2B
path will fail
Set ’TX2 off’.
check TP1, TP2
at MODPA1
2F equipment:
check TP1, TP2
also at MODPA2
− Shutdown 2A should act
− ECU shows ’Switch Fail’
− Alert warning ’ECU fault’
− SYN2: LED ’VCO off’ on
− CSB, SBO not present
(CRS)
− CSB, SBO not present
(CLR); GP: CLR, CSB2*
ECU J1,J4 Set to park posit.
Set TX1 on and "TX2 on"
TX1 is main.
Reset ECU . Clears the ECU fault:
− ’Switch fail’ is off
− ECU Fault maint. warning
is removed (time < 30 s).
Set equipment to ’Normal’
condition, both TX ON.
Set key switch to
required mode.
Status ’Normal’, equipment is
in service again
Date: Sign:
LLZ/GP
Maintenance Operation and Maintenance
TEST DATA SHEET ILS 420
6−10 a SOAC 01.10
Test Data Sheet ECU: Control Logic 1 and 2, 3rd Shutdown Logic (with ECU −0003)
Test Item Jumper set Purpose Action Expected Result Passed Failed
Prerequisite:
Equipment in ’Normal’ condition,
both TX on, TX1 main
ECU −0003: On LCP: Switch
key lock switch to
’LOCAL’.
− ’Monitor Bypass’ not set
− Status ’NORMAL’ **
ECU J3,J1,J5,J4:
1−2, 9−10
Park position ** If ’Maint. Generate LCP Warning’ in
LRCI Station configuration’ is set to
’yes’, the status is ’Warning’.
ECU Control logic 1
TX1
J3: 5−6, 7−8
J1: 5−6, 7−8
Disablecontr.
log. 2 3rd
shutd.logic:
control logic1
remains enabled
Press LGA1 reset
until a station
alarm is induced
Check voltage at
J3/3 & J1/3: >4 V
− station shutdown (si)* or
− change over to TX2 (du)*
− ECU shows ’Switch Fail’
− Both totem poles are off
(1A/1B)
ECU Control logic 1
TX2
J5: 5−6, 7−8
J4: 5−6, 7−8
Disablecontr.
log. 2 3rd
shutd.logic:
control logic1
remains enabled
Press LGA2 reset
until a station
alarm is induced
Check voltage at
J5/3 & J4/3: >4 V
− station shutdown (dual)
− ECU shows ’Switch Fail’
− Both totem poles are off
(2A/2B)
ECU J3,J1,J5,J4:
1−2, 9−10
Park position − park jumper
− Reset ECU
TX1 and TX2 are on again;
TX1 is main
ECU Control logic 2
TX1
J3: 3−4, 7−8
J1: 3−4, 7−8
Disablecontr.
log. 1 3rd
shutd.logic:
control logic2
remains enabled
Press LGA1 reset
until a station
alarm is induced
Check voltage at
J3/3 & J1/3: >4 V
− station shutdown (si) or
− change over to TX2 (du)
− ECU shows ’Switch Fail’
− Both totem poles are off
(1A/1B)
ECU Control logic 2
TX2
J5: 3−4, 7−8
J4: 3−4, 7−8
Disablecontr.
log. 1 3rd
shutd.logic:
control logic2
remains enabled
Press LGA2 reset
until a station
alarm is induced
Check voltage at
J5/3 & J4/3: >4 V
− station shutdown (dual)
− ECU shows ’Switch Fail’
− Both totem poles are off
(2A/2B)
ECU J3,J1,J5,J4:
1−2, 9−10
Park position − park jumper
− Reset ECU
TX1 and TX2 are on again;
TX1 is main
ECU 3rd Shutdown logic Disconnect cable
at connector J7
(upper) of SYN1.
Causes an executive alarm
condition.
NOTE: The next step will reboot the LCP. Due to missing communications from the LCP during the reboot time, the executive bypass, although asserted, is disabled for the 3rd
control logic. On the ECU, the flashing LED ’Exec. Bypass’ indicates this state. The 3rd shutdown control integrates the duration of an exec. alarm condition while it is
not bypassed. When this integration reaches 6 s, the control then suppresses the clock to the clock detector which triggers a complete station shutdown.
ECU 3rd Shutdown logic
(incl. Clock Detector)
On LCP, Issue a
’Reboot LCP’
command.
Check voltage at
J3/7, J1/7, J5/7 &
J4/7: >4 V
− during LCP reboot, LED
’Exec. Bypass’ goes off
after 10 s, and on again
after 5 s until station
shutdown indicated by
ECU LED ’Exec.On’ and
’Stby On’ off
− ’3rdShutdown Path Off’ lit
− verifies 3rd shutd. logic
as cause of ’off’ condition
Reconnect cable
to J7 of SYN1.
Reset ECU. Clears the ECU.
Set equipment to ’Normal’
condition, both TX ON.
TX1 main.
Set LCP key
switch to
required mode.
Status ’Normal’, equipment is
in service again, no alarms or
alerts indicated.
NOTE: For this test, 8 jumpers are to be used.
Date: Sign: * (si)= single, (du)= dual
Ed. 01.11
LLZ 421
Operation and Maintenance Maintenance
ILS 420
01.10 SOAC 6−11
6.3 NORMAL MAINTENANCE
6.3.1 Replacing the Lithium Battery (LCP)
To back up the real time clock in case of a voltage drop, the subassembly LCP contains a Lithium
battery (LS 14250, 3.6V/0.95Ah, make SAFT; Thales Ref. Nr. 97991 28479). Lithium batteries have an
extended life time. Also not in use, it ages as a result of self−discharging. Therefore it is recommended
to install a replacement battery after about five years operation, or its voltage drops below
3.0 V. The battery back up function is enabled via jumper, set during first setup or before replacing
the respective pc board. Always observe the label on the battery. The Lithium battery has to be replaced
by the same battery type. Other types of lithium batteries are not approved by Thales.
WARNING
Do not recharge, disassemble, heat above 100 °C or incinerate the lithium cell. Do not
short circuit, or solder directly on the cell. Disregard of the norms regarding the use of
lithium batteries may cause risk of fire, explosion or leaking out of toxid liquid and gas.
Run−down batteries are objects that can pollute the environment and must be disposed
of with proper precautions. Regard national regulations.
The backup battery can be replaced without switching off the power. The battery is disconnected with
jumper X36 on the LCP. To unsolder the battery a soldering iron with a grounded soldering tip should
be used. A battery short−circuit via the soldering iron for the duration of soldering is unlikely to harm
the relatively high−impedance battery, but should however be avoided wherever possible.
Replace the Lithium battery as follows:
− Open the cabinet front door. Remove jumper X36 on the LCP.
− Unsolder the minus and plus pole of the old battery from the soldering terminals on the LCP board.
− Remove the old battery
− Re−tin the soldering terminals of the new battery in order to ensure a good soldered connection.
− Insert the new battery, and solder the minus and plus pole of the battery to the soldering terminals.
− Set jumper X36 on the LCP. Close the cabinet front door.
6.3.2 Check of Emergency Battery Voltage
The overall battery voltage is monitored by the transmitter assembly LCP. However it is recommended
to measure the battery voltage to check the performance of the battery. The voltage measured is that
between the BAT1 or BAT2 terminals against GND (BAT0), see 2−13, 2−14. The half voltage value
should be exactly half the full value. Should unbalance occur, a fault is indicated. The deviation in the
ratio of 2:1 for the half voltage measurement increases the further the aging process of a cell is advanced.
If the deviation from the ratio of 2:1 is minimal, the battery can be maintained in service, but
should be kept under observation.
If the deviation is greater (from as little as a few tenths of one volt), each cell must be measured under
load in order to determine the weak cell. This should be replaced by a new cell as soon as possible.
The battery half to be examined may be determined as follows.
Voltage ratio: locate faulty cell:
> 2:1 (e.g. 47: 23 V = 2.043:1) between center and minus
< 2:1 (e.g. 47: 24 V = 1.958:1) between center and plus
CAUTION
Before replacing the battery or individual cells, always check:
− Is the battery−charged power supply switched on ?
− Switch off fuse switch F20 (50 A) in battery fuse box, if the BCPS is on.
Ed. 01.11
LLZ 421
Maintenance Operation and Maintenance
ILS 420
6−12 SOAC Ed. 01.10
6.3.3 Matching the charging Voltage of BCPS Modules
6.3.3.1 Reasons for Voltage matching
The BCPS has a fixed voltage of 54 V±3 % for parallel operation with lead batteries. It is not possible
to vary the output voltage for operation with other types of battery, e.g. nickel cadmium batteries. An
adjustment of ±1 V is however possible on the front panel of the slide in units. This is intended for
optimization of the trickle charge. The most important parameter for operation of lead batteries at the
BCPS is the trickle charge voltage. This voltage is 2.23 V/cell ±1% in accordance with VDE (registered
society of German electrical engineers).
In the interests of optimizing the charge Thales have utilized the upper tolerance limits and fixed the
trickle charge voltage at 2.25 V/cell. This results in a trickle charge voltage of 54 V for a battery with
a rated voltage of 48 V. Strictly speaking however this fixed trickle charge value of 54 V is only valid
at a temperature of 20 °C in the battery compartment. If the temperature rises above 20 °C, it is necessary
to reduce the voltage in order to maintain a sufficient difference with respect to the gassing voltage
of 2.4 V/cell. If the temperature falls below 20 °C, it is necessary to increase the charging voltage
in order to ensure optimum charging. The relationship between the temperature and the charging
voltage is shown in the table below. It is valid for the types of battery proposed or provided by Thales.
Please consult the manufacturer if using other types.
BATTERY TEMPERATURE IN °C TRICKLE CHARGE VOLTAGE IN V
10 55.08
15 54.54
20 54.0
25 53.46
30 52.92
The internal temperature in the battery compartment is subject to fluctuations dependent on the time
of day and time of year. The considerable mass of the batteries and the associated high thermal inertia
mean that temperature fluctuations dependent on the time of day are insignificant and can be ignored.
It is necessary on the other hand to determine the average temperature in the battery compartment
during the hot and cold seasons or to estimate it on the basis of experience. The optimum charging
voltage can be read off from the table when the average temperature has been calculated.
It is not necessary in moderate climatic zones to take seasonal fluctuations into account. If the batteries
are accommodated inside a shelter or a building, the fluctuations between summer and winter are
not very great, and the mean temperature will not deviate substantially from 20 °C.
In such cases it is not necessary to optimize the trickle charge voltage as described here. This only
becomes necessary if the batteries are installed outside the shelter or in hot or cold zones without
an air−conditioned battery compartment. If the mean annual temperature is known during the installation
phase, adjustments can be carried out by the Thales installation team. Otherwise they should
be carried out by the customer’s own maintenance personnel as follows.
6.3.3.2 Matching the Voltage
NOTE: This procedure is performed once during installation or if other battery types are used.
The battery must be connected. Switch off the transmitters. Using the switches on the front panel
switch off the ACC units except the outer left one, which has to be adjusted first. Beginning with left
ACC unit adjust the ACC units as follows:
− Connect a digital voltmeter to the test jacks on the front panel of the switched on ACC unit.
LLZ 421
Operation and Maintenance Maintenance
ILS 420
Ed. 01.10 SOAC 6−13
− Set the desired voltage carefully at the potentiometer on the front panel with the aid of a calibration
screwdriver. It should be possible to obtain the value specified in the table in 6.3.3.1 to within a
tolerance of ±0.2 V.
− Switch off the adjusted ACC unit.
− Switch on the next ACC unit and adjust it in the same way.
− Adjust all installed ACC units in the same way.
When all units have been set in this way measurements should be performed as follows:
− Disconnect the battery.
− Perform measurement between BAT and −BAT on the BCPS terminal plate using a digital voltmeter:
First measurement : Transmitter off, BCPS without load
Second measurement : Transmitter on, BCPS with load
The values should not deviate from the set value by more than ±1 %. If the deviation is greater, the
relevant module can be determined by deactivating the power units individually and observing the
voltage change. The voltage of this unit must then be corrected upwards or downwards. The BCPS
is then ready for service.
LLZ 421
Maintenance Operation and Maintenance
ILS 420
6−14 SOAC Ed. 01.10
supplied with battery
LLZ 421
Operation and Maintenance Maintenance
ILS 420
Ed. 01.10 SOAC 6−15
6.4 STARTUP, CARE AND MAINTENANCE OF THE LEAD BATTERY
6.4.1 Startup Specifications for the Lead Battery in Navigation Installations
6.4.1.1 General
For countries in Europe, the sets of lead batteries in the navigation installations are normally supplied
already filled and charged by the manufacturer. On site the batteries then merely need to be installed
and connected to the power supply unit of the navigation installation.
NOTE: Maintenance free batteries need no further maintenance activities.
Batteries supplied in a non−filled state to their point of installation must be set up, filled and charged
there in accordance with the manufacturers handling specifications. The batteries can be supplied
non−filled in either a dry precharged state, or a non pre−charged state (see 6.4.1.3.2 and 6.4.1.3.3 ).
The battery may not be removed from its transport packing until immediately prior to startup.
CAUTION
Maintenance−free batteries have to be set into operation within half a year after delivery
to prevent drawback in the battery lifetime.
The startup procedure comprises the following stages:
a) Installation on site, interconnection of the cells with the cell connectors and connection to the
electrical installation;
b) Filling with accumulator acid;
c) Immediate subsequent charging or activation of the plates (see 6.4.1.3)
d) Immediate subsequent activation in standby parallel mode.
These instructions do not cover the installation work, but instead deal merely with filling and activation
using tools which, even in remote areas, are either available or easily obtainable. They moreover apply
only to batteries for which a rated acid density of 1.24 kg/l is specified by the manufacturer, e.g.
Gro E, iron−clad and block batteries, and not to starter batteries or batteries with a fixed electrolyte.
The aids required are as follows:
− Accumulator acid
The acid must have a particular density. If this value is incorrect, the mixture should be made up
of high−density sulphuric acid and specially purified water (see 6.4.1.2.2 ).
− 1 Acid syringe with areometer
− 1 Thermometer
− 1 Acid jug (non−metallic)
− 1 Funnel (non−metallic)
− 1 Float acid level indicator
− Handling specifications
− Battery−charging power supply (BCPS), type FRAKO
− Various resistors
− Single−wire cables (2.5... 6 mm)
− Ampermeter and Voltmeter (accuracy
English to Russian: компьютеры Detailed field: Computers (general)
Source text - English This mode displays all of the critical and peripheral variables that are stored in RAM (operational data area). By pressing the [Enter] or the [U]/[ ] key, the data is displayed in an ascending order. By pressing the [P]/[-] key, data is displayed in a descending order. Pressing the [Q] key at any time will exit the Diagnostics menu. The ST98 functional data in RAM is saved in the USER area of the Non-Volatile Memory (NVM). The user has the option to save user data to the USER Save area of NVM at any time. At completion of the FCI calibration, the data was saved to the FACTORY area of NVM. Each of these data areas may be viewed by the user (Refer to Menu item ‘S’ for more detail on saving and restoring the NVM data areas).
Example:
At BOOTUP or RESET, the following is displayed: “Initialization!”, with “FCI ST98” flashing, followed by “Heat On!”.
Pressing D [Enter] will display “USER Displayed” followed by “Change it ?
Translation - Russian В этом режиме отображаются все ответственные и внешние переменные, которые хранятся в ОЗУ(область информации о функционировании системы) При нажатии клавиш [Enter] или [U]/[ ], данные отображаются в восходящем порядке. При нажатии клавиши [P]/[-], данные отображаются в нисходящем порядке. При нажатии в любой момент клавиши [Q] выводится меню сообщений об ошибках. Технологические данные ST98 в ОЗУ сохраняются в области USER(пользователь) энергонезависимой памяти(NVM). У пользователя есть опция сохранения в любое время данных пользователя в области сохранения USER NVM. По завершению настройки FCI, данные сохранены в области FACTORY(заводские настройки) NVM. Каждая из этих областей данных может быть просмотрена пользователем (Подробнее о сохранении и восстановлении данных в областях данных NVM смотри меню ‘S’).
Пример:
В режиме BOOTUP(запуск) или RESET(перезагрузка), отображается следующая информация: “Initialization!”(“Инициализация!”), при этом мигает “FCI ST98” , после чего следует “Heat On!”(Обогрев включен).
При нажатии на D [Enter] будет индицироваться “USER Displayed”( польователь выведен на экран), после чего следует “Change it ?(сменить пользователя?)
English to Russian: авиация вертолет Detailed field: Aerospace / Aviation / Space
Source text - English TECHNICAL TYPE TEST
Dauphin AS365 Helicopter
Landing gear system
The helicopter is equipped with a retractable tricycle landing gear which includes two main landing gear units located aft of the aircraft center of gravity and a nose landing gear unit attached to the airframe structure.
The brake system is hydraulically controlled from the cockpit via transmitters slaved to the tail rotor control pedals, and by a braking relay powered by the hydraulic pressure from the utility system.
Shock strut tube
It is made from steel. It supports the wheel spindle on which is machined the lower attachment fitting of the torque links and the brake unit attachment flange. A bushing is screwed to the top part, which actuates a microswitch control button when the shock strut is fully extended.
Torque links
They consist of two identical light alloy links which are held together by a pin fitted with a ball-joint and an adjusting shim. The torque links are coupled to the strut housing and the shock strut tube by means of two bolts and nuts locked with cotter pins.
Low pressure chamber
It is situated between the strut housing and the cylinder. The hydraulic fluid is stored under the separator piston head.
Translation - Russian ТЕХНИЧЕСКИЕ ИСПЫТАНИЯ ТИПА
Вертолет AS365 Дофин
Система шасси
Вертолет оснащен убирающимся трехопорным шасси, в состав которого входят две основные стойки шасси расположенные по направлению к корме относительно центровки летательного аппарата и механизм носовой стойки шасси, закрепленный на конструкции планера.
Тормозная система управляется гидравликой из кабины экипажа с помощью сельсин-датчиков синхронизированных с педалями управления хвостовым винтом, и реле торможения, приводимым в действие гидравлическим давлением системы общего назначения.
Стакан амортизационной опоры шасси
Изготовлен из стали. Она служит опорой для оси вращения колеса, на которой выточена нижняя крепежная арматура шлиц-шарниров и фланец крепления тормозного механизма. Втулка прикреплена винтами к верхней опоре, которая приводит в действие концевик кнопки управления при полном выдвижении амортизационной опоры.
Шлиц-шарниры шасси
Они состоят из двух одинаковых звеньев, изготовленных из легкого сплава, которые удерживаются вместе с помощью пальца с шарнирным соединением и регулировочной шайбой. Шлиц-шарниры попарно соединяются с нишей ноги шасси и стаканом амортизационной опоры шасси с помощью двух болтов и гаек, фиксируемых шплинтами.
Камера низкого давления
Располагается между нишей ноги шасси и гидроцилиндром. Гидравлическая жидкость хранится под головкой поршня разделителя.
More
Less
Experience
Years of experience: 40. Registered at ProZ.com: Mar 2012.
aviation, radio, radar, radio navigation, security and fire alarm systems, control instrumentation, radio and electrical engineering in general, computers, PLC controls.
CV: technical translator EN> RU Kovalevsky I.L.
Hello! My name is Igor Leonidovich Kovalevsky, 1961. I live in the city of Mogilev, Belarus. In 1984, I graduated from Daugavpils Higher Military Engineering School (studied for 5 years) in the specialty "aircraft electronic warfare ", military radio engineer. In the school passed the exam for qualified military translator, English. Translate paired EN> RU (from English to Russian). From 1984 to 1993 I served in the Army as an engineer for technical operation of radio communication, radar, navigation equipment, radio command control systems of cargo plains and helicopters Mi-8. Since 1994, I was working in the Department of Internal Affairs of the Republic of Belarus as an engineer ( installation, commissioning, technical maintenance of security and fire alarm systems). Since 2006, I worked in civil service organizations of the security and fire alarm systems. Currently self-employed in translation. As follows from my track record, the closest to me topics related to aviation, radio, radar, radio navigation, security and fire alarm systems, control instrumentation, radio and electrical engineering in general, computers. It is possible working as experienced engineer in some projects to be performed, removing is possible. As individual entrepreneur I have an e-wallet of «webmoney» system. I have verified account in Moneybookers(Skrill) system. Use for working electronic dictionaries multitran, multilex, abbyy lingvo, specialized dictionaries in electronic form. I may work on paper dictionaries: English-Russian dictionary V.K.Myullera, Dictionary of Computer Science and others. Working in the environment Trados, working with the programs memoQ, SDLX. I am ready for using of other types of TM and programs; working with files, sent to the normal format PDF.I am capable to translate 8-10 pages per day (1,800 characters with spaces or 250 - 300 words). If you are interested in my resume, I propose to send me a test translation. My rates to be discussed, within reasonable.
http://antaresbelarus.translatorscafe.com/
http://www.proz.com/profile/1570277
My e-mail address: Ingvarbel.kovalevsky @ yandex.ru, [email protected], [email protected], Skype-useitall, icq-№ 610-813-977 Antares. My mobile phone number: +375-293-77-56-46.
Sincerely, I.L.Kovalevsky.
Резюме: технический переводчик EN>RU Ковалевский И.Л.
Здравствуйте! Меня зовут Ковалевский Игорь Леонидович, 1961 года рождения. Проживаю в городе Могилеве, Республика Беларусь. В 1984 году я закончил Даугавпилсское высшее военное авиационное инженерное училище, факультет "авиационных радиоэлектронных средств", военный радиоинженер. В училище сдал экзамен на квалификацию военного переводчика, английский язык. Перевожу в паре EN>RU. С 1984 по 1993 год служил в армии на инженерных должностях по технической эксплуатации радиосвязного, радиолокационного, радионавигационного оборудования, систем радиокомандного управления военно-транспортных самолетов и вертолетов Ми-8. С 1994 года на инженерных должностях в департаменте охраны МВД Республики Беларусь (монтаж, наладка, техническая эксплуатация систем охранной и пожарной сигнализации). С 2006 года в гражданской организации по обслуживанию охранной и пожарной сигнализации. В настоящее время индивидуальный предприниматель, занимаюсь техническим переводом (фриланс). Как следует из моего послужного списка, наиболее близки мне темы, связанные с авиацией, радиосвязью, радиолокацией, радионавигацией, автоматикой, системами охранной и пожарной сигнализации, радиотехникой и электротехникой в целом. возможна работа в качестве инженера с большим практическим опытом работы. Для расчетов за исполненные заказы имею электронный кошелек системы webmoney,имею верифицированный аккаунт в системе Moneybookers(Skrill), принимаю для оплаты банковские переводы типа «Контакт», Western Union и другие. Использую для работы электронные словари multitran, multilex, abbyy lingvo, тематические словари в электронном виде. Имею для работы словари на бумажном носителе: англо-русский словарь В.К.Мюллера, словарь по вычислительной технике и другие. Работаю в среде Trados, работаю с программой memoQ, готов к освоению других видов TM и др. программ; работаю с файлами, присланными в формате PDF. В нормальном режиме перевожу 8-10 страниц в день(1800 знаков с пробелами или 250 - 300 слов).
Если Вас заинтересовало мое резюме, предлагаю прислать мне тестовый перевод. Мои адреса электронной почты: [email protected], [email protected], [email protected], Skype- useitall, icq- №610-813-977 Антарес. Мой мобильный телефон: +375-293-77-56-46.
С уважением И.Л.Ковалевский.
Keywords: radio, radiolocation, electricity, air force, aviation, PLC, security and fire alarm systems, электроника, электотехника, автоматика. See more.radio, radiolocation, electricity, air force, aviation, PLC, security and fire alarm systems, электроника, электотехника, автоматика, авиация, автоматика, радио, радиотехника, системы охраны, automation, alarm systems, general engeneering, общетехнические, коммпьютеры, computers. See less.